

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: BACHELOR OF SCIENCE; BACHELOR OF SCIENCE IN APPLIED MATHEMATICS	
AND STATISTICS	
QUALIFICATION CODE: 07BSOC; 07BAMS	LEVEL: 6
COURSE CODE: LIA601S	COURSE NAME: LINEAR ALGEBRA 2
SESSION: NOVEMBER 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER:	MR G. TAPEDZESA
MODERATOR:	MR B. OBABUEKI

INSTRUCTIONS

- 1. Examination conditions apply at all times. **NO** books, notes, or phones are allowed.
- 2. Answer ALL the questions and number your answers clearly and correctly.
- 3. Marks will not be awarded for answers obtained without showing the necessary steps leading to them (the answers).
- 4. Write clearly and neatly.
- 5. All written work must be done in dark blue or black ink.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page)

QUESTION 1. [27 MARKS]

1.1 Let $T: P_2 \to P_2$ be a mapping defined by

$$T(a_0 + a_1x + a_2x^2) = 5a_0 + a_1x^2$$
, where $a_0, a_1, a_2 \in \mathbb{R}$

- (a) Show that T is a linear mapping. [5]
- (b) Hence, find the kernel of T. [5]
- (c) Is T one-to-one? Explain your answer. [2]
- 1.2 Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator for which T(1,1) = (1,-2) and T(1,0) = (-4,1). By noting that $\{(1,1),(1,0)\}$ is a basis of \mathbb{R}^2 , find a formula for T(x,y), and then use the formula to compute T(5,-3).
- 1.3 What does it mean to say that a linear mapping $T: V \to W$ is singular? [2]
- 1.4 Let $T_1: \mathbb{R}^3 \to \mathbb{R}^2$, $T_2: \mathbb{R}^2 \to \mathbb{R}^2$ and $T_3: \mathbb{R}^2 \to \mathbb{R}^3$ be the linear mappings defined by

$$T_1(x, y, z) = (z - x, 2y), \quad T_2(x, y) = (x + y, x - y), \text{ and } T_3(x, y) = (y, 0, 2x).$$

Find a formula for defining each of the following compositions, if possible. If it is not possible to have such a formula, give a reason.

(a)
$$T_2 \circ T_1$$

(b)
$$T_3 \circ T_2$$
.

QUESTION 2. [28 MARKS]

2.1 Consider the linear operator T on P_2 , defined by

$$T(a_0 + a_1x + a_2x^2) = a_0 + a_1(2x+1) + a_2(2x+1)^2,$$

and the basis $S = \{1, x, x^2\}$ in P_2 .

- (a) Find the matrix representation of T relative to S. [7]
- (b) By observing that S is the standard basis for P_2 , or otherwise, find the coordinate vector for $p = 2 3x + 4x^2$ relative to the basis S, and denote it by $[p]_S$. [2]
- (c) Use the transition matrix you obtained in part (a) above and the result in (b) to compute $[T(p)]_S$. [4]
- (d) Hence, determine $T(p) = T(2 3x + 4x^2)$. [2]

2.2 Consider the following two bases $B = \{u_1, u_2\}$ and $B' = \{v_1, v_2\}$ for \mathbb{R}^2 , where

$$u_1 = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \quad u_2 = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad v_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$$

- (a) Find the transition matrix from B to B' and denote it by $P_{B\to B'}$. [7]
- (b) Compute the coordinate vector $[w]_B$ where $w = \begin{bmatrix} 3 \\ -5 \end{bmatrix}$ and, hence, use the transition matrix you obtained in part (a) above to compute $[w]_{B'}$. [6]

QUESTION 3. [22 MARKS]

3.1 Suppose that the characteristic polynomial of some square matrix A is found to be

$$p(\lambda) = (\lambda - 1)(\lambda - 3)^2(\lambda - 4)^3.$$

- (a) What is the size of the matrix A? [2]
- (b) Is the matrix A invertible? [2]
- (c) How many eigenspaces does A have? [2]

Explain your answers.

3.2 Suppose
$$A = \begin{bmatrix} 1 & -2 & 8 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$$
 and $P = \begin{bmatrix} 1 & -4 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

- (a) Confirm that P diagonalises A, by finding P^{-1} and directly computing $P^{-1}AP$. [9]
- (b) Hence, find A^{1000} . [7]

QUESTION 4. [23 MARKS]

- 4.1 Let V be a finite dimensional vector space over a field K.
 - (a) What does it mean to say that a mapping $f: V \times V \to K$ is a bilinear form on V? [3]
 - (b) What does it mean to say that a bilinear form f, as defined in (i) above, is symmetric? [3]
 - (c) What does it mean to say that a mapping $Q: V \to K$ is a quadratic form on V? [3]

QUESTION 4 CONTINUES ON THE NEXT PAGE

4.2 Consider the equation $5x_1^2 - 4x_1x_2 + 8x_2^2 = 36$.

(a) Re-write the equation in the matrix form $\mathbf{x}^T A \mathbf{x} = 36$, where A is a symmetric matrix.

[4]

(b) Given that the matrix

$$P = \begin{bmatrix} \frac{2}{\sqrt{5}} & -\frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{bmatrix}$$

orthogonally diagonalises A, use a suitable variable transformation to place the conic in standard position and, hence, identify the conic section represented by the equation.

[10]

END OF QUESTION PAPER